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1 Introduction  

The calculation of energy flows across the life cycle of energy generating technologies serves to 

identify the net energy delivered and environmental impacts from these sources. Several metrics 

are used to establish how energy inputs relate to energy outputs of an energy technology, of 

which two are most prominent. First, the net energy return value (NER), expressed as a ratio, 

which evaluates the amount of energy an energy source contributes to society over its life-cycle, 

relative to the inputs required to establish the technology. A standard way of calculation is by 

taking delivered life-time outputs, and dividing these by the inputs necessary to produce, operate, 

maintain, and dismantle an energy technology, with appropriate boundary levels as specified [1]. 

Second, energy payback time (EPT), an estimate of the duration of time expressed in months or 

years at which an energy source has ñpaid backò its initial energy input. It is expressed by taking 

the energy input necessary to produce and operate the energy technology and dividing by the 

outputs produced over a fixed period of time [2]. In a similar manner the impact of carbon 

emissions are studied across their life cycle, using metrics based on greenhouse gas emissions 

per unit of energy output, whereas the GHG emissions figure is partially or fully derived from 

energy inputs [3,4].  

The NER and EPT metrics can be used for purposes of energy planning in several ways as 

described in [5]. First, by assessing the energy impacts of energy transition pathways due to large 

shifts between energy systems, including the need for upfront energy investment in scaling new 

infrastructure, and trade-offs such as intermittent solar storage versus curtailment. Net energy 

metrics can be used to calculate whether the net energy delivered to society by the energy sector 

grows sufficiently in such a transition, as financial and generation values only do not deliver this 

information. Second, by comparison between energy technologies on the net output delivered to 

society in complement to financial values. If technology A has a larger total energy input for the 

same amount of output versus B, yet costs less (for instance due to less labour input and 

additional market price of risk), then typically B will be built since it has the lowest dollar per 

unit of energy delivered to its owner, yet technology A is preferable from a lowest dollar per 

total energy available to society perspective. And third, for assessment of technologies by 

themselves at early laboratory stages, in terms of whether they deliver net energy input at all, 

how much, and what improvements are feasible. The assessment indicates at an early stage if an 

energy technology, and which configurations thereof, has large potential. For example, recent 

perovskite solar cell studies calls for a 2 to 29 months EPT depending on used materials [6,7], 

and a prospective assessment of silicon heterojunction solar cells found a 0.9 to 1.2 EPT by 2020 

[8]. 

In this study a meta-analysis of quality aspects of existing energy metrics studies for solar-

photovoltaic (solar-PV) is carried out. The purpose is to identify quality variation, study 

shortcomings, and the ability to reproduce existing results, to carry out a harmonization of 

studies, and to assess methodological improvements for assessments of the energy component of 

solar-PV using life cycle analysis (LCA), material flow analysis (MFA), or other methods. In 

2015 the total installed grid-connected capacity for solar-PV was 230 GigaWatts, which 
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provided for approximately 1% of electricity use, or 0.9 out of 86 ExaJoules of electricity 

generated, showing its growing importance in energy systems [9ï12]. 

The variability in net energy was studied prior in several meta-analyses. A wide variation in 

study results has been established. For example for polycrystalline systems an EPT between 1.5 

and 5.7 years [13], and for monocrystalline systems a NER of 5.2 to 12.3 times output versus 

input [14]. The variation has been stated to be caused by variability in the operational 

environment of solar-PV installations, technical performance and life expectancy assumptions, 

in- or exclusion of balance of system (BOS) components, installation methods, and the 

manufacturing processes to produce the cells [13,15,16]. Similarly, a 397 harmonization meta-

analysis for solar-PV on Greenhouse Gas emission (GHG) metrics found key variation due to 

solar irradiation, operating lifetime, module efficiency, and performance ratios (Hsu et al. 2012). 

All these factors relate to technical aspects and thereby available meta-analyses are limited in 

scope in the discussion of data quality issues affecting results. Individual energy metric 

assessments do refer the results being affected by outdated data [2,14], missing data [17], quality 

of collected data [18], and reliability and verifiability of data [19], but implications thereof have 

to the awareness of the author not been assessed. The influence of data quality remains an 

uncertain parameter in relation to the variability of outcomes.  

Data in the literature is primarily derived from Life Cycle Inventory (LCI) databases, especially 

Eco-Invent, because of its frequent updates for solar-PV data [20]. Data in LCI databases is 

obtained by a life cycle inventory approach using a variety of methods which can include 

company data surveys, direct measurements, expert assessments, and theoretical calculations. 

The LCI data is used either directly for a system component in an energy metric assessment, 

such as the energy input required to produce a silicon wafer, or indirectly, by estimating 

component material mass and multiplication with an associated embodied energy data value 

from an LCI database, such as for the aluminium frame. In addition to LCI data other data 

sources used in energy metric analyses can include manufacturer's technical specifications, 

market surveys from solar industry magazines, indirect estimates for technological processes, 

and data directly obtained from industry sources outside of LCI. It is also common in the 

majority of studies to borrow data from other studies to cover a part of the LCA supply chain.  

In this paper a meta-analysis of twenty studies which calculate solar-PV energy metrics is carried 

out with a focus on the aspect of data quality, data age, and verifiability and reporting.  

 The following aspects are examined: 

¶ First, the data quality of each study is analysed using a framework based on the indicator 

approach developed by [21]. The indicator quality framework is outlined in section 2.2 and 

results are presented in section 3.1. 

¶ Second, the ability to accurately reproduce each study is analysed to examine scientific 

standards of reliability and verifiability of used data. Also a subsequent study harmonization 

step is carried out to create similar boundary conditions for purposes of comparability. The 
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reproduction and harmonization methodology is outlined in section 2.3 and results are 

presented in section 3.2. 

¶ Third, trends in reported energy metrics values in relation to age of data, size of studied 

modules, and changes in module power capacity per m2 are examined. The effort serves to 

deepen the analysis of the relevance of data age and solar panel types. The trend 

methodology is presented in section 2.3.2 and results are presented in section 3.2.1. 

¶ Fourth, an interval sensitivity analysis is carried out in relation to solar radiation, reported life 

cycle energy input values, as well as technology development. The technology analysis 

serves to understand the impact of using outdated data without correcting for technology 

improvements. The interval sensitivity methodology is outlined in section 2.4, and results are 

presented in section 3.3. 

The paper subsequently discusses results in section 4 and ends with conclusions and 

recommendations in section 5. The study is carried out as an individual piece of work which 

aims to contribute to advancing net energy metrics, as part of an open collaboration between the 

Institute of Integrated Economic Research and Stanford University (Prof. Adam Brandt), for 

purposes of creating a net energy calculator tool. 

 

2 Methodology 

2.1 Literature Survey 

The literature search for solar-PV energy metric studies was conducted via Google Scholar, 

Elsevier Sciencedirect, and Web of Science using combinations of the keywords "solar-PV", 

"embodied energy", "net energy", "energy payback", "energy return", "solar cells", "solar 

modules", "life cycle analysis". Also references in previous meta-assessments of solar-PV were 

taken into account [14ï17,22]. In total thirty-one studies assessing solar-PV net energy metrics 

for polysilicon and monosilicon modules were assessed published since 2000. The temporal cut-

off was selected because of the rapidly changing technological landscape in the solar industry 

[23]. A second cut-off is the exclusion of solar panels below a size of 75 Wattpeak as these are a-

typical older modules not representative of today's technology. The size cut-off resulted in the 

removal of two studies from the dataset [24,25], which led to a twenty-nine study dataset with 

fourty-three energy metric values. 
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2.2 Data quality indicators 

The retrieved studies were analysed for their data quality. To establish a complete energy metric 

analysis an understanding is necessary of all the direct and indirect processes involved to 

manufacture, operate, and dispose of the solar-PV system across its life cycle. The 

manufacturing system is complex, technologically evolving, and energy throughputs are 

influenced by geography due to variation in process input sourcing, technological setups, and 

transport distances. The data quality indicator approach seeks to provide insights in how well 

these characteristics are captured by individual studies. For life cycle inventories a system has 

been developed based on reliability, completeness, temporal age, geographical correlation, and 

technological correlation [21].  This system is still used commonly, such as by the US 

Environmental Protection Agency [26] and in the Eco-Invent LCA database [27]. In this study an 

adjusted indicator set including system completeness and facility level completeness is added. 

 The approach provides for the following set of indicators: 

¶ Reliability , the sourcing method of data used in the analysis as an indicative approach on the 

occurrence of data errors. 

¶ System completeness, the extent to which inputs outside of direct solar PV manufacturing 

are taken into account such as operation, installation, transportation, higher-order 

manufacturing inputs, and auxiliary services. 

¶ Facility completeness, the extent to which key manufacturing stages which can spatially be 

separated are included. In case of solar-PV these are quartz mining, quartz to silicon chunks 

refining, silicon ingot forming, wafer production, cell, manufacturing, and module 

production. 

¶ Data age, the age of the data in relation to the publication date of the study.  

¶ Geographical conditions, the extent to which process data comes from a uniform set of 

areas, or is extracted from different sites with varying production conditions.  

¶ Technological uniformity , the extent to which data comes from processes of the same or 

different companies, as well as from technologies specific to the output of study or borrowed 

from similar industries. 

The information from these indicators can be used to assess key differences in results and direct 

additional data collection. Another considered indicator was the completeness of individual or 

unit processes within facilities such as etching of wafers. This level of unit process completeness 

could not be analysed because existing studies only focus on the aggregate level of a system or 

facility in their data reports and supply chain descriptions. 

The quality indicators need to be scaled and criteria are required for categorization. In [21] a 

scale from 1 to 5 was proposed for five categorisation criteria, which is adopted here in reverse 

order (higher is better). In this study an alternative set of criteria is used, as summarised in Table 

1 below, as the criteria in [21] were found to be too generic to enable a transparent and explicit 
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estimation. Each study was analysed based on the table 1 criteria at a supply chain facility level 

for all criteria, except system completeness. The estimation of quality indicators for reliability, 

technology, and data age, was based on averaging individual quality values for each facility in 

the supply chain, whereas for the other indicators a single score was assigned. If study data was 

not measured directly but taken from other sources, secondary or original data was traced and 

analysed for the categorisation analysis. Data was also analysed for congruence in copying data 

from the original study to the borrowing study to categorize reliability. The results of the quality 

indicator assessment are presented in results section 3.1 and the underlying calculation details are 

in the Supplementary Materials A available on the internet. 
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Table 1  Quality indicator criteria applied in this study as amended from [21]. 

Indicator 

score 

1 2 3 4 5 

Reliability Non-qualified 

estimate or non-

referenced 

estimate 

Qualified estimate 

(e.g. by industrial 

expert) 

Data from measurements 

from other sources 

adjusted without stating 

assumptions 

Data from 

measurements from 

other sources 

adjusted stating 

assumptions* 

Data from 

measurements or 

other studies 

measurements 

without adjustments 

System 

completeness 

The value is set by awarding 0.5 points for each item covered under operation, maintenance, raw material 

transport, recycling/landfill transport, transport to installation site, installation, decommissioning, auxiliary 

services, balance of system inclusion, and higher order manufacturing stages calculated with LCA 

software.**  

Facility 

completeness 

<50% of 

facilities covered 

or no description 

50 to 65% of 

facilities covered 

65 to 80% of facilities 

covered 

80 to 90% of 

facilities covered 

90 to 100% of 

facilities covered 

Data age age of data 

unknown or >10 

years difference 

10,9,8,7 years 

difference in age of 

data to year of study 

6 or 5 years difference in 

age of data to year of 

study 

4 or 3 years 

difference in age of 

data to year of study 

2 to 0 years 

difference in age of 

data to year of study 

Geographical 

conditions 

Process data 

from unknown 

areas 

Process data from 

multiple areas per 

facility for 

individual sub-

processes in dataset 

Process data from 

multiple locations 

varying by facility 

Multiple sets of 

process data uniform 

across regions 

averaged for the 

dataset 

Process data from a 

single region for all 

facilities (no 

averaging)  

Technological 

uniformity****  

No description of 

processing route 

and not traceable 

through sources 

Process data non-

matching 

technologies and 

outputs across 

supply chain*** 

Process data matches 

outputs but based on 

non- standard 

technologies**** 

Process data for 

slightly different 

outputs and 

technologies 

Process data matches 

outputs and 

technological route 

*Data taken from measurements either from the study itself or from another study are adjusted either with explicitly stating what 

adjustments and why or without mentioning the underlying assumptions and procedure.  

**Higher-order upstream stages of the production process include inputs to produce the machinery and deliver it to a facility, 

inputs to produce the machinery that produces the machinery, and so on. Normally in a life cycle inventory a truncation takes 
place at a 0th or 1st order stage. Such truncation errors have been found to be significant up to the order of 50% (Lenzen 2000).  

***An example of slightly different material and technologies would be semiconductor silicon ingot manufacturing at 10 levels 
of purity versus solar ingot manufacturing at 6 or 7 degrees of purity.  

****Standard from an overall market perspective. An example of non-standard technologies is the use of float-zone based versus 
the standard Bridgeman process to produce polysilicon ingots.  
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2.3 Study harmonization 

The qualitative indicator assessment was complemented with a quantitative inventory for both 

energy inputs and outputs for purposes of comparison and harmonization. The baseline for the 

harmonization was established by verifying the inventory through assessment of energy input 

and output data and meta-data, which were used to reproduce energy metric results for each 

study. If only aggregate values for a solar module were published, yet referenced studies 

contained any disaggregate data matching the aggregate value, then disaggregate values were 

included in the analysis.  

After establishing the baseline a harmonization was carried out using the following nine 

adjustments: 

¶ Studies which only publish energy payback values were complemented with net energy 

return calculations and vice versa. 

¶ Studies lacking energy input values within the solar module production chain were 

complemented with mean values from the inventory. 

¶ Studies lacking energy input values for BOS, installation, installation transportation, 

operation & maintenance, and decommissioning were complemented with mean values from 

the inventory. Also for decommissioning recently published silicon module thermal 

treatment electricity costs were incorporated [28]. 

¶ Energy input values for batteries, auxiliary services, and power lines operation and 

restructuring were removed from studies incorporating these.  

¶ Energy input values for labour and capital investment cost based on conversions via the 

energy intensity of economies were removed from studies incorporating these. Wages in the 

view of this author represent an allocation of energy surplus, not an energy consumption on-

site), and including capital expenditures causes double counting of embodied material and 

direct energy costs in manufacturing of solar-PV.   

¶ Electricity output values were recalculated using a 1700 kWh/m2/year radiation value. 

¶ A systems efficiency rate of 0.8%, and a degradation rate of 0.7%/year was applied to all 

studies based on average values across 2000 solar systems found in the literature [74-75].  

¶ Solar module packing factors to adjust for non-cell module area were assumed at 0.94 for 

polysilicon and 0.8 for mono-silicon modules. 

¶ A plant lifetime of 25 years for all systems. 

The missing components in a studies inventory were filled based on mean values across studies 

with the respective components with the constraint of data published since 2004 to reflect more 

up-to-date quantities. The complete harmonized dataset is presented in results section 3.2 and 

underlying calculation details are available on the internet in the supplementary Materials B. 
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2.3.1 Harmonized Energy Metric Analysis 

The energy metrics were calculated using the mathematical bottom-up approach to distinguish 

flows developed by [29] briefly summarized here. The approach divides the supply chain or 

project up in a set of process stages ί ρȟςȟσȟȣὲ from initial resources to end-of-life. Each 

stage represents a transformation at the same spatial location of energy and material flows. At 

each stage a distinction is made between, internal, external, and indirect energy flows:  

¶ Flow input internal self-consumption, ὢὭ, representing the portion of energy in a fuel used 

in the conversion process. For instance, the ~10% of crude oil used up in a refinery in the 

conversion to petroleum products.  

¶ Flow output internal self-consumption, ὢέȟ, where ό ρȟςȟσȟȣὲ is an output flow 

index. This represents the proportion of outputs diverted back at the end of a process stage or 

stages into it for energy conversion purposes, for instance waste heat obtained from a curing 

proces redirected back for use in ingot growing processes.  

¶ External energy flows, Ὁȟ, where ὴ ρȟςȟσȟȣὲ denotes flow pathways wherein direct 

non-internal input energy is produced. An example is the external input of electricity used in 

the operation of solar-PV facilities.  

¶ Indirect energy flows, Ὅȟ, where ὧ ρȟςȟσȟȣὲ denotes the sector wherein the flow was 

consumed. The indirect consumption can consist of i) óembodiedô energy used to produce 

material inputs at higher-order stages, ii) energy used in the provisioning of labour associated 

with the project, and iii) energy used in the production of external energy inputs at higher-

order stages.  

Since a portion of produced output after each stage, Ὂ, can end up in indirect energy flows a 

subtraction from the output itself is necessary to obtain a net value of energy generated to 

society. For this purpose a parameter ὶ is introduced to enable calculation of this fraction of 

indirect energy inputs, as ὶὍȟ, which provides the sum of energy reverting back into a stage.  

The distinction between several types of outputs and inputs is used to reproduce net energy 

return values using equation (1) and energy payback using equation (2) below. The produced 

output of a solar module Ὂ is adjusted by a module degradation rate  as incorporated in 

analysed studies and for harmonization to produce a degradation corrected value Ὂᶻ using 

equation (3).  

ὔὉὙ
В ȟ В ȟȟȟ

В В ȟ В ȟ В ȟȟȟȟ
        (1) 

Ὁὖὄ
В Ⱦ

В В ȟ В ȟ В ȟȟȟȟ
       (2) 

Ὂȟ
ᶻ Ὂȟ ρ  (3)          
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