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Abstract

The aim of this study is to investigate the ability of electricity system models to provide scenario
based insights for policy purposes. A framework is built from a review of existing studies of model
characteristics and their linkages to model scenario types, which are linked to the purpose of policy
problem analyses. The framework can be used as a tool to structure the examination of electricity
system models, and guide electricity system model selection and enhancement in light of policy
problem driven analyses. An illustration of the framework is presented by a review of German
electricity model scenario studies. The review shows that current models are used for the policy
purpose of indicator assessment and instrument comparison by quantification of indicators such as
monetary or pollution impacts. However, they are not suitable to provide the means for option
reduction, problem exploration, and political or societal paradigm change exploration, as the
endogenous model structure for these is missing. A particular lack of endogenous treatment was found
for renewable technology capacity change and policies, learning and productivity growth based
technological change, socio-political-technical interactions, and limited demonstrated use of

uncertainty treatment techniques.
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1. INTRODUCTION

Energy policy in the early 21° century seeks to guide the transition to an energy system underpinned
by three characteristics: a secure supply chain from extraction to delivery, affordable supply in
relation to economic output, and low environmental impacts especially greenhouse gas emissions
(Bocca and Hanna 2013). The alignment of these goals is difficult because trade-offs between energy
sources and technologies exist in economic, social, and environmental dimensions (Pappas et al.
2014, Pfenninger and Keirstead 2015). Knowledge of such trade-offs within this complex system is
essential to policy makers, who are tasked with the selection, implementation, and adjustment of
policy instruments, so as to steer investments and alter the institutional fabric of energy markets.
Computer models are increasingly used as knowledge support tools in this policy process because
they can calculate mentally complex to grasp interactions, such as between policy instruments and
investment decisions (Wild 1996; Strachan et al. 2009).

Traditionally models have been used as a toolbox to aid scientific theory formulation, in order to
falsify or add to the credibility of particular theories, by iteratively improving model representations
of the real world (Rappaport 1995). More recently, model use was introduced to inform policy
decisions for the purpose of analysing the impacts of proposed policy solutions, referred to here as
model scenario to policy insight. The transfer of model use from science to policy is not
straightforward, however, due to a disparity between model complexity and information wants of
policy makers. Computer models cannot provide a clear course of action as a “policy panacea”
especially when simulating the future (Strachan 2011) yet policy makers prefer simple effective
solutions; their impact ideally expressed in single numbers despite oversimplification and decreased
validity (Manski 2013). The disparity can be expressed by several model-to-policy information gaps
which deserve attention for computer models to be useful in providing real insights instead of just
numbers (Worrell et al. 2004; Pfenninger et al. 2014). Three model-to-policy information gaps can be
perceived. First, a stakeholder gap between model scenario exercises and policy maker involvement in
building and creating “ownership” of scenarios. Scenarios are seldom developed in a participatory
manner with electricity sector stakeholders (Schmid and Knopf 2012). A structured approach which
integrates policy relevant stakeholder exercises with energy system modelling is considered essential,
such as low carbon pathway studies (Foxon 2013). In this approach scenario events, policies, and
assumptions are built into the model inclusive of the mental model of policy makers. Second, an
information gap between model results and their use and interpretation by policy makers in the
process of policy formulation and implementation. New learning approaches were found necessary to
improve efficiency and reliability of research recommendations for use in policy decisions. At a
communication level researchers could benefit from taking into account what information is used and
how so as to improve policy decision usability. At an institutional level policy makers could be better
incentivized to be aware of and use research recommendations in their political judgement. And, at a
social level learning effectiveness can be aided by improving trust between researchers and policy
makers (Head 2010). Third, a technical gap between outputs models can provide and insights from
which policy makers would benefit. Both the purpose of model use for policies and capabilities within
that purpose to gain insights are relevant. Model purpose at a macro level can be classified into the
presently dominant use of solution analysis of proposed policies and impacts, solution discovery of
new or optimal combinations of policies, and problem analysis to gain insights in unexpected or
uncertain challenges that cascade from the present situation into the future. Modellers and policy
makers need to collaboratively establish what model purposes and features policy makers deem useful
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and thus which technical improvements are necessary to enable these. An example of a policy
usefulness study looked at MARKAL-MACRO optimization scenarios for UK energy and climate
policy (Strachan et al. 2009). Model value by policy makers was found in providing system-wide
insights, knowledge improvement by discussing uncertainty using a structured model based approach,
and the quantification of GDP and demand using linked energy-economic models.

The aim of this study is to address the third technical model-to-policy gap by investigating the ability
of available electricity system models to provide system-wide insights for policy purposes. The first
objective is to provide a framework that improves thinking in building and using models as scenario
for policy insight tools (Hughes and Strachan 2010), in particular to examine what model capabilities
are necessary to exercise particular policy relevant scenarios. To this end the framework describes
potential purposes of models in providing policy insights, their relation to categories of scenario
exercises, and electricity model characteristics necessary to execute described scenario exercises. The
second objective is to provide insights in what type of policy problem analyses can and cannot be
carried out using existing electricity system models. And the third objective is to analyse the existing
characteristics of electricity system models, so as to ascertain what model improvements need to be
made to expand the scenario to policy insight toolbox.

Section 2 gives a methodological overview of different purposes to which models can be employed to
gain policy insights (2.1), a review and classification of electricity system model characteristics (2.2),
and a description of scenario exercises recast in relation to computer based execution and purpose for
policy analysis (2.3). In section 3 results are presented including the framework linking policy
analysis purpose to model characteristics based on related scenario exercises (3.1), a review of
German electricity mix model studies using the framework (3.2), and the ability of underlying
models to reproduce historic German electricity system trends given built model characteristics (3.3).
In section 4 the framework is discussed and in section 5 conclusions and policy implications are
drawn focusing on potential improvements to increase model abilities to gain policy insights.

2. METHODOLOGY

The model policy purpose to model characteristics framework is developed by reviewing three strands
of literature; electricity system modelling, political science analyses of political decision structure,
and scenario exercises classifications. Their relation is discussed below and shown in figure 1.

In the political science review frameworks were studied which investigate mental models of policy
decisions and the policy environment. The focus lies on inferring strategies to analyse political
problems that form the purpose of using computer models through scenario exercises. In the scenario
exercise review a predictive, explorative, and normative scenario typology (Borjeson et al. 2006)
developed outside of computer model use, is recast to align with model based execution of scenario
exercises. Thus a link is made between the policy analysis purpose of scenario exercises and the
ability of models to carry out scenario exercises given their characteristics.

The electricity system model review focuses on describing model characteristics and application
methodologies illustrated with electricity systems model examples. Selected model characteristics
were chosen from a policy insight perspective, in contrast to operational decision making, because of
their relation to future developments, policy to electricity system interactions, and the representation
of decisions by system actors. Characteristics include scope, modelling paradigms, uncertainty
treatment, decision structure, technological change, and socio-political-technical interactions.
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Excluded are characteristics related to operational technical detail and short term market decisions
which were covered in Ventosa et al. (2005) and Weidlich and Veit (2008). The review contributes to
the existing energy system literature by its focus on model characteristics related to policy insights,
electricity system examples, and creating the link to scenario execution ability and their purpose for
policy analysis. Existing reviews were carried out focusing on model to model comparisons
(Bhattacharya and Timilsina 2010; Foley et al. 2010), methodologies for particular sub-system
purposes such as demand forecasting (Suganthi and Samuel 2012; Torriti 2014), the integration of
renewable energy in models (Connolly et al. 2010), models utilising simulation via difference-
differential equations (ahmad et al. 2015), sensitivity to energy technology costs across models
(Bosetti et al. 2015), or overall model characteristics and capabilities (Ventosa et al. 2005; Pfenninger
et al. 2014). An overview of review studies to date can be found in (Pfenninger et al. 2014), who
discuss energy system modelling and treatment of spatial and temporal scales, uncertainty, model
transparency, and human interactions. The study by Ventosa et al. (2005) specifically focuses on
short-term electricity market structure, dispatch and purchasing decision algorithms, and grid
representation.

Methodological framework

2.1 Policy 2.2. Model 2.3 Scenario
problem analysis characteristics exercises

N o2

Ability of execution

Purpose

Figure 1 — section overview of components of presented framework and purpose and executions links

The amalgamated model policy purpose to model characteristics framework framework is presented
in the results (section 3.1). The analytical use of the framework is presented through a review of
studies on German power generation evolution. Germany was selected because of the proliferation in
studies following the 80%+ 2050 renewable electricity goal plus 2011 nuclear phase-out decision. The
goal is to highlight present abilities to execute certain type scenarios, to gain policy insights, and
signal areas of improvement. The literature search was conducted using ScienceDirect, Web of

9% ¢ 9% ¢

Science, and Google Scholar, using combinations of keywords: “Germany”, “electricity”, “evolution”,
“nuclear”, “renewables”, “coal”, “natural gas”, “modelling”, and “scenario”. In total eleven electricity
system modelling studies were located. The review is divided into a general review of model
characteristics, type of scenario exercises, and policy analyses carried out (section 3.2), and an
analysis on the ability of scenario exercises to reproduce historic electricity evolution trends given in-
built model characteristics (section 3.3). The presented focus on model abilities are complementary to

Schmid et al. (2013) who focus on model outcomes of six German electricity system studies.
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2.1 POLICY ANALYSIS PURPOSE

Political solutions can be defined by three aspects: the policy instrument, its quantitative setting, and
the paradigm determining the instrument’s political feasibility (Hall 1993), such as belief in laissez
faire capitalism limiting choice to non-market interventionist policies. The political structure from
which solutions emerge has been described in theoretical frameworks of decision making amidst
conflicting values and interests, information flows, institutional arrangements, and socioeconomic
variation (Sabatier 2007). The multiple streams framework developed by Kingdon (2010) is employed
here because it recognizes scenario uncertainty in political decisions and focuses on problem analysis.
Governments are perceived as ‘organized anarchies’ who address numerous policy issues in parallel
streams in an abrupt and disorderly fashion. A stream has a “life of its own” following concerns of
individuals plus manipulation by interest groups. The theory describes two aspects shaping the
purpose of political problem analysis that can be linked to model use (Zaharadias 2007):

¢ Indicator assessment: problem solutions are assessed by effect and magnitude using
simplified quantitative indicators. Modelling can assist to express quantities from known
relationships such as electricity grid expansion costs to accommaodate variable renewables.

e Problem exploration: new dimensions to problems are uncovered by events that cause
politicians to shift focus, such as industrial accidents and bottom-up societal concerns. Such
events and responses can ex-post or ex-ante be modelled to assess their relevance.

Another key pillar of multiple streams is that few ideas receive serious consideration as time
constraints and perceived political feasibility limit options that are scrutinized. The notion is in tune
with the poly-heuristic theory of two-stage decision making: policy makers carry out a screening to
remove politically infeasible options and subsequently assess gains and losses to find the best solution
(Mintz 2005). These theories relate to four model based analyses:

e Option reduction: reduce the number of policy instruments deemed not feasible. Models can
be used to test feasibility on technical and economic grounds. Political feasibility could be
operationalized indirectly through constraints to improve the policy relevance of model
results. For instance, reducing wind energy operational efficiency as an indirect assumption of
suboptimal placement due to citizens landscape preferences

¢ Instrument comparison: provide an assessment of differences and synergies of policy
instruments. Models can explore instrument size (e.g. height of feed-in tariff) and variation
(e.g. government subsidy versus feed-in) effects on outcomes by altering parameter values
and structure between model runs.

o Political paradigm exploration: the instrument prioritization process is biased by the ruling
paradigm of how society should be organized following a political ideology. Modelling can
function as a ‘neutral’ testing ground of instruments beyond the current paradigm to explore
effects of paradigm change (e.g. particular instruments become available at a selected time-
step associated with a policy paradigm change), or quantify outcome differences between
instruments related to particular political paradigms (e.g. market driven vs non-market driven
instruments).

e Societal paradigm exploration: the instrument prioritization process is biased because
politicians anticipate societal resistance to proposed changes, or because external support
influences their choices. Politicians potentially thus eschew particular instruments to avoid
political loss or promote these to reap personal benefits (e.g. windfall taxes on electricity
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companies). Models can explore this using fixed a-priory instrument setting, decision
probabilities of instrument implementation, or interactions between societal resistance and
policy maker behaviour.

The policy problem approaches described above can be grouped into three phase of the policy making
process, problem analysis, solution discovery, and solution analysis (figure 2).

Indicator
assessment
Problem
Solution exploration
analysis
Option
reduction
Solution
discovery Instrument
comparison
Problem Political paradigm
analysis exploration
Social paradigm
exploration

Figure 2 — analytical approaches in policy decisions

2.2 MODEL CHARACTERISTICS REVIEW

In this section an overview is presented of the characteristics of electricity system models. Possible
variations in seven structural model characteristics are described (overview figure 3): model scope
(2.2.1), modelling paradigms (2.2.2), uncertainty treatment (2.2.3), decision structure (2.2.4),
technological change (2.2.5), and socio-political-technical interactions (2.2.6).
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Figure 3 — Electricity system model characteristics included and excluded in this study.

2.2.1 SYSTEM SCOPE

The structure of electricity system models varies substantially across the more than 90 electricity
system models constructed to date (Pina 2012). A key division is the scope to cover the three sub-
systems of the electricity system:

e Short time-step models of electricity supply and demand with market participant exchange. A
common structure is a day-ahead spot market model but also forward, bilateral off the
counter, and reserve or capacity market models are available (Just and Weber 2008).

e Long time-step models of generation capacity expansion at individual firm or sector
investment levels.

e Grid flow models to explore the spatial match between electricity supply and demand. Their
use is growing due to increasing renewable energy shares in the electricity mix (Swider and
Weber 2007).

Historically, sub-systems were separately treated with as an early exception the MARKAL model
despite being limited to annual time-steps (Fishbone and Abilock 1981). This computational
constraint is increasingly irrelevant since software and hardware improvements have enabled model
operation up to continuous hourly to sub-hourly blocks. An accurate implementation of high
resolution grid flows and renewable stochastics which previously limited coupling of the three
electricity sub-systems is now feasible (Pfenninger et al. 2014), of which the importance is estimated
in Poncelet et al. (2016). Hard-linked models have emerged with an expansive and exceedingly
granular temporal scope such as E2M2 (Spiecker and Weber 2014). Also efforts are made to soft-link
existing models such as MARKAL for electricity markets plus capacity expansion with PLEXOS for
grid flow modelling (Deane et al. 2012).
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2.2.2 MODELLING PARADIGMS

The second discussed characteristic is model classification into optimization, equilibrium, and
simulation paradigms (Ventosa et al. 2005). Initial models from the 1970s aimed to find energy
technology combinations with the lowest supply costs from a “central planner” perspective
(Bhattacharyya and Timilsina 2010). This optimization architecture uses objective equations to let the
computer find an optimal value such as total sector profit or least costs across all model time-steps. A
set of linked constraint equations ensures that a solution takes designated system characteristics into
account (Sarker and Newton 2007), such as generation capacity and investment availability.
Optimization models also differ by selected algorithmic solver because of numerical problem
complexity. A key decision is limiting variables to integer values versus allowing non-integer values
in the possibility space resulting in either linear or mixed integer linear programming models (Chong
and Zak 2013).

The shift to electricity market liberalization in the 1990s led to a new class of optimization models
focusing on electricity supply-demand trading and capacity investment markets (Borenstein et al.
1995; Bushnell and Ishii 2007). These equilibrium models compartmentalise optimization using an
objective equation postulated at firm level and solve per time-step (Ramos et al. 1999). Firm
behaviour is effectuated through supply bids and price plus capacity allocation and solved by a market
clearing equilibrium procedure. Demand is either formulated using price-elastic demand curves or by
market participant demand bids (Philpott and Pettersen 2006). Supply bids are placed assuming full
or partial knowledge of market demand in response to behaviour of competing firms. Three bidding
strategies have been established. In Cournot models firms optimize production gquantity variation, in
Bertrand models price variation, and supply function equilibrium models let each firm produce a
supply curve with price and quantity variation (Rudkevich 1999).

The simulation model class describes changes in an entity or variable state by behavioural algorithms
or differential equations (Pfenninger et al. 2014). A division into two approaches is observable. First,
differential equation models, originating in the 1970s for electricity systems, where difference
equations capture state changes, and continuous differential equations are numerically solved to
calculate state changes which provide input into the difference equation (Ford 1997). In engineering
these systems are referred to as state-space models and in system dynamics literature as stock-flow
models (Cellier and Kofman 2006). The approach enables flexible incorporation of systems behaviour
such as feedback by modular mathematical implementation without balancing constraints. Second,
agent-based models, introduced in the 2000s for electricity systems based on entities such as firms or
households represented by behavioural algorithms (Weidlich and Veit 2008). An agent state change
is caused by interactions of agents plus higher system components per time-step. Algorithms are
typically described with conditional logic triggered at a continuous or event-response basis (North and
Macal 2007). The architecture is especially useful for tracking ‘agent’ information including learning
from past behaviour, agent spatial data, and incorporating network behaviour. Models differ by agent
learning algorithms including reinforcement learning, genetic algorithms, and learning classifiers
(SensfuR et al. 2007; Weidlich and Veit 2008; Salehizadeh and Soltaniyan 2016).
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The sharp optimization-simulation distinction is blurred when exploiting the modular structure of
simulation to incorporate optimization, either via soft-linking simulation with optimization models, or
by using meta-heuristic optimisation algorithms (Fu 2002; Barton and Meckesheimer 2006). For
example, an agent-based simulation for power supply and demand resolution was soft-linked with a
power dispatch optimization model (Sarica et al. 2012).

2.2.3 UNCERTAINTY TREATMENT

A third model characteristic is uncertainty treatment. First, types of uncertainty are described and
subsequently techniques to include uncertainty are discussed. A common distinction is the epistemic
or aleatory nature of uncertainty. Epistemic uncertainty stems from a reducible gap in knowledge and
aleatory occurs when uncertainty is irreducible due to inherent system variability (Helton et al. 2006).
A characteristic attributed to aleatory uncertainty is the applicability of probability distributions since
by definition knowledge is sufficiently complete (Kiureghian and Ditlevsen 2009). The assertion is
contentious for complex forward-looking systems as the future is never fully known and “hidden”
outcomes may exist. The location of uncertainty describes where in a model uncertainty occurs
distinguishing between parameter values (parametric) or equations (structural) (Walker et al. 2003).
Also of influence and often conflated with uncertainty can be coding, numerical simulation, or data
transformation errors. The sum of uncertainty and errors has been named the prediction error between
“true” and predicted values (Strong and Oakley 2014). The nature and location of uncertainty can be
related to three levels (Walker et al. 2003):

e Statistical uncertainty, called risk in economics, indicates a situation where all outcomes plus
causes are known. Continuous or discrete probability distributions can be applied when
significant empirical data is available. Statistical uncertainty is aleatory in nature and
parametric in location.

e Scenario uncertainty, called ambiguity in economics, describes a situation where all outcomes
are known but causal knowledge is incomplete. The selection of a probability distribution is
subjective although feasible (Dequech 2000) and mathematical treatment relying on degrees
of belief via possibility theory or fuzzy sets may be better suited (Oberkampf et al. 2002).
Scenario uncertainty is usually epistemic in nature and structural in location but can be of
aleatory origin given the problem context, such as for nuclear power plant failures.

¢ Fundamental uncertainty, called deep uncertainty in climate science, relates to unknown
radical or structural changes (Hallegatte et al. 2012). Most outcomes and causes are
speculative and not all outcomes are known such that neither probabilistic nor possibilistic
approaches make sense. Adaptive heuristics where a strategy is matched to a changing
environment may be a suitable approach (Mousavi and Gigerenzer 2014). Fundamental
uncertainty is epistemic in nature and structural in location.

An additional discussion on the level of uncertainty can be found in the study by Mirakyan and Guio
(2015), who split fundamental uncertainty into uncertain environments where probabilities cannot be
associated with outcomes, and ignorant environments where outcomes are speculative. The
relationship between the uncertainty classifications at different levels, nature, and location is shown in
figure 4, including techniques utilized applied at structural and parameteric levels discussed in the
next section.
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Figure 4 — uncertainty classification and utilized techniques in the electricity system literature

The description of the nature and level of uncertainty helps to inform the choice of an appropriate
treatment strategy. Uncertainty treatment techniques themselves are applied at either parametric or
structural locations as respectively discussed in this section. To exemplify uncertainty treatment from
a decision influence perspective a system actor’s categorisation can be utilised, where system
elements are defined as pre-determined, actor contingent elements changeable or initiated by decision
makers, and non-actor contingent elements outside decision influence (Hughes et al. 2013). Actor
contingent elements can be sub-classified in exercisable actions by governments, consequential
actions by firms and citizens, and vice versa (N. Hughes, personal communication, April 29, 2014).

The standard parametric uncertainty treatment is uncertainty propagation used in both optimisation
and simulation paradigms. Model parameter values fixed within a model run are varied between runs
to explore model outcome variation using brute-force Monte Carlo methods or sampling techniques
(Helton et al. 2006). Statistical techniques can be employed for sensitivity analyses to explore input
parameter contribution to outcomes (McKay et al. 1999). Non-actor elements examples include fuel
prices and technology cost development, and actor contingent elements R&D budgets and electricity
market floor prices. A key example of structured use of this technique was published for the ESME
UK energy system model (Pye et al. 2015).

Simulation models employ stochastic generators to introduce parameter value fluctuation
representing uncertainty. Either as differential equations with stochastic processes such as (geometric)
brownian motion (Botterud 2003; Safarzynska and van der Bergh 2011) or discrete probabilities such
as a binomial random variable function (Olsina et al. 2006). Variation introduced by the technique is
especially helpful to gain insights in extreme value effects on outcomes. Example cases are weather as
a non-actor element and partially randomized investment decisions or price bids as actor contingent.

Multi-stage stochastic programming is a probability based decision tree approach used in
optimisation. The model timeline is split in sequential stages between events with multiple a-priori
defined outcomes (Hunter et al. 2013). An event outcome is implemented as a parameter with

Accepted Manuscript in Renewable and Sustainable Energy Reviews.
http://dx.doi.org/10.1016/i.rser.2016.01.090, © <2016>. This manuscript version is made available
under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



http://dx.doi.org/10.1016/j.rser.2016.01.090
http://creativecommons.org/licenses/by-nc-nd/4.0/

associated probability. The ex-ante resolution is contingent upon full knowledge of the range within
event set(s) and probabilities as a hedging strategy. At event time the parameter value is resolved
drawing from a distribution and becomes a “known” value in remaining periods. The technique has
been used in “central planner” optimisation models such as TIMES and in equilibrium models of
generation capacity expansion with risk averse firms (Ehrenmann and Smeers 2011; Loulou et al.
2004). The approach can introduce structural breaks in parameter values or one-off variable
adjustments as discontinuous events. The main use is to test the robustness of policy decisions prior
to event onset under uncertainty for any outcome (Loulou et al. 2005). For instance, non-actor
infrastructure breakdowns or emissions allowance policy and minimum technology share targets as
actor events.

The downside of multi-stage stochastic programming is the assumption of complete knowledge of all
futures. Also the technique cannot incorporate continuously changing random values such as wind-
speed fluctuation. To overcome this recursive stochastic optimization was developed for optimization
where selected parameters assume a random value through stochastic processes in each period. The
objective function is solved taking into account the world state and a decision vector such as dispatch
or capital investment. A recursive algorithm incorporates both present and extrapolated future states
to affect decisions (Powell et al. 2012). The technique is analogous to stochastic generators in
simulation but can locate optimal outcomes despite algorithmic complexity using approximate
dynamic programming. A recursive stochastic optimization in an equilibrium model of electricity
market investment was built using markovian processes (Bushnell and Ishii 2007).

Techniques for parametric uncertainty described above rely on probabilistic approaches at a statistical
uncertainty level. Few models have incorporated degrees of beliefs assuming scenario uncertainty
(Zeng et al. 2011). Production of distributed power plants was simulated using uncertainty
propagation with trapezoidal possibilistic distributions for solar and wind power operation parameters
using evidence theory (Li and Zio 2012). A hybrid stochastic and possibilistic optimization model for
firm power generation planning was built using triangular fuzzy numbers (Lotfi and Ghaderi 2012).

Structural uncertainty has received substantially less attention. The majority of studies are model
comparisons between model structure and results (DeCarolis et al. 2012). For instance, a cournot
versus supply function comparison in equilibrium models using a German electricity case study
(Willems et al. 2009). A minimum cost versus alternating current optimum network flow comparison
within a soft-linked agent-based simulation of electricity markets (Sarica et al. 2012). A comparison
between using a single cost and a multi-objective objective including carbon emissions for exploring
renewable energy contributions to emissions and costs (Pereira et al. 2016). And a comparison
between two electricity system optimisation models MARKAL and TEMOA finding discrepancies
due to constant versus variable assumptions of electricity demand at annual timescales (Hunter et al.
2013). The Methods to Generate Alternatives (MGA) technique from operations research was
proposed to consistently treat structural uncertainty in optimisation models (DeCarolis 2011). An
objective function is modified with a slack parameter to explore near-optimal solutions in the inferior
model space. The rationale is inclusion of “hidden” aspects in the model objective such as nuclear
power regulatory costs implying deviation from the optimum. The uncertainty discrepancy parameter
approach can be used when the “true” output value is known to estimate distance to model prediction.
The discrepancy is decomposed and a causal evaluation is conducted using discrepancy parameters in
model equations (Strong and Oakley 2014).

10

Accepted Manuscript in Renewable and Sustainable Energy Reviews.
http://dx.doi.org/10.1016/i.rser.2016.01.090, © <2016>. This manuscript version is made available
under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



http://dx.doi.org/10.1016/j.rser.2016.01.090
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.2.4 DECISION STRUCTURE

A fourth characteristic of model classification relates to decision structure. Decisions can implicitly
follow from model equations or explicitly be represented in a model as actor responses to exogenous
changes or interactions following endogenous linkages. The implementation can be structured by the
number of decision makers (allogeneity), decision response (form), and knowledge availability
(opsis), as summarized in figure 5 below. The form of decision making can be categorized as:

e Uniform in top-down implicit approaches or an explicit decision maker such as a “central
planner”.

e Pluriform for multiple decision makers like large firms in an oligopoly.

o Omniform in case of a complete “bottom-up” representation.

The decision response is defined as homogeneous if all actors can perform only one reaction as a
change in the same variable(s) in the same direction and quantity, and heterogeneous for multiple
possible reactions. For example, a change in increase or decrease in investments of modelled firms
and the size thereof. Finally, knowledge used in a decision is structured by opsis (e.g availability of
knowledge) either from a model perspective in the implicit case or a modelled decision maker in the
explicit case. Knowledge can relate to model parameters, variables, and strategies of other decision
makers. Five knowledge availability variants are distinguished:

o Amblyopia or “reduced vision” as partial past and present knowledge and no future
knowledge.

e Moyopia or “short sightedness” as complete past plus present knowledge but no or very
limited future knowledge.

e Hyperopia or “farsightedness” as complete past plus present knowledge and using an
expectation of the future to shape decisions.

e Diplopia, or “double sightedness” as partial past, present, and future knowledge. The model
or actor is able to know a selection of future pathways a-priori.

¢ Omniopia or “all sightedness” as complete past, present, and future knowledge. A common
mode in inter-temporal optimization models where the complete solution space is explored.

The choice of optimization or simulation affects incorporation of allogeneity, opsis, and form.
Optimization models are suited for uniformity because they are formulated around objective
equation(s). Pluriformity can be introduced using multi-objective programming with a particular set of
objectives for each decision group solved using weighting to represent trade-offs (Antunes et al.
2004). Response heterogeneity can be expanded by using probabilistic or possibilistic techniques.
The practical feasibility of expansive heterogeneity in optimization is recent, however, because of
parallel computing and algorithm advancement (Hunter et al. 2013). Optimization models are
normally omniopic but time-stepped variants allow myopic or hyperopic settings. An example is the
National Energy Modelling System (NEMS) used for the US EIA Annual Energy Outlook which
solves market equilibria in each time-period and can incorporate expected price or consumption
through extrapolation (Holtberg 2013).
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Simulation models can describe any form and allogeneic setting as demonstrated for contagious
disease diffusion models (Rahmandad and Sterman 2008). However, the architecture of differential
equation simulation suits aggregate approaches because bounded entities can easily be lumped under
one equation. Pluriformity is achieved by compartmentalization of equation sets, and decision
heterogeneity either by sub-compartmentalization per response or stochasticity (Koopman et al.
2001). Whilst theoretically possible to produce an omniform representation using differential
equations tractability limits compartmentalization (Rahmandad and Sterman 2008). In cases with
large numbers of decision makers, endogenous interactions, and spatial complexity, agent based
simulation is better suited. The agent-based explication of conditional decisions is ideal for omniform
and heterogeneous response cases (Parunak et al. 1998). In general in simulation it is difficult to
include diplopic and omniopic settings as future knowledge is unknown at solution time given model
structure. Indirectly future knowledge can be introduced by looping model run outputs into inputs.
Hyperopic formulations are possible using forward-looking extrapolation such as in the ENGAGE
agent-based model (Gerst et al. 2013).

Model
"decisions"

. . Opsis
Allogeneity (no. Decision (knowledge
decision makers) response (form) availability)

Uniform iswiskarssiie Amblyopia
(explicitiimplicit 9 (reduced vision)
central planner)

. Heterogeneous Myopia
Pluriform (short sightedness)
(Oligopoly)
: Hyperopia
Omniform :
f hted
(All firms) (far sightedness)
Diplopia
(double sightedness)
Omniopia
(all sightedness)

Figure 5 - decision characteristics for implicit and explicit actor model decisions

12

Accepted Manuscript in Renewable and Sustainable Energy Reviews.
http://dx.doi.org/10.1016/i.rser.2016.01.090, © <2016>. This manuscript version is made available
under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



http://dx.doi.org/10.1016/j.rser.2016.01.090
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.2.5 TECHNOLOGICAL CHANGE

A fifth characteristic of electricity system models is technological change. It is operationalized as a set
of functions which determine technology cost changes and when relevant R&D labour allocation or
investment. Other aspects of technological change considered outside of the scope of this paper
include demand-side and energy efficiency technology diffusion (see Barreto and Kemp 2008).

The simplest representation is by pre-determined exogenous cost scenarios. The model or modelled
decision maker selects the cheapest technology based on a pre-determined cost evolution (Ma and
Nakamori 2009), such as in the battery integration electricity cost assessment study by Mileva et al.
(2016). More insightful are endogenous aggregate “off-the-shelf” cost changes of a technology using
learning curves. The standard form approximates learning by doing as an effortless passive process
using the relationship between cumulative installed capacity and investment cost. The function is
based on a power law with a learning rate exponent established by an empirical fit (Séderholm and
Sundgvist 2007). An expansion is the two-factor learning curve introducing R&D investments and/or
knowledge stock as dependent variables with a searching rate exponent. Specification of knowledge
stock allows for knowledge depreciation as “forgetting by not doing” (Barreto and Kypreos 2004). In
stochastic variants learning and searching parameter are selected from a distribution (Grubler and
Gritsevskii 1997). A novel formulation presents technology adoption with limited foresight under
uncertain learning using step-wise optimisation (Chen and Ma 2014).

A third approach used hitherto only in optimization models of electricity systems to the author’s
knowledge introduces productivity growth based R&D to explicate directed technical change. The
R&D process improves a technologies output quantity, reduces labour, energy, and capital factor
inputs, or both. The factor explication enables linkage to macro-economic growth models (Aghion
and Howitt 2005). The formulation in the WITCH model takes a production function with energy
efficiency where knowledge stock and energy inputs are required to deliver energy services. Thereby
accumulating knowledge stock or “energy related human capital” by R&D lowers energy input
requirements to deliver energy services (Bosetti et al. 2007). A second formulation in the REMIND
model originates from endogenous schumpeterian growth models of quality innovations. Innovations
are generated by a probabilistic R&D investment or labour allocation function with decreasing
returns. If successful the innovation causes factor productivity to improve up to a maximum success
parameter (Acemoglu 2009; Hiibler et al. 2012). A potential advantage of the second formulation is
patent explication and thus productivity evolution variation between firms (Aghion and Howitt 2005).
Several other variants include technology or firm cost reduction spillover, regional technology
diffusion, and regionalized cost curves (Rout et al. 2009; Thompson 2010)

The driver of R&D in optimization paradigms is introduced by adding an R&D investment term to the
cost minimization objective. An exogenous R&D budget constraint caps a maximum cost change
(Kypreos 2007; Hibler et al. 2012). The driver in simulation paradigms includes an R&D based
learning curve, such as in the agent-based ENGAGE model with an exogenous R&D budget as a
fraction of GDP (Gerst et al. 2013), and the E3MG differential equation model with induced
technological change where decreasing technology costs are a consequence of investment decisions
with limited information (Mercure 2012).
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2.2.6 SOCIO-POLITICAL-TECHNICAL INTERACTIONS

A sixth characteristic are interactions between modelled social and technological change and policies.
Available models have only a limited capacity to deal with behavioural and technological responses
within policy scenarios (Laitner et al. 2003). A historic example can be found in an analysis of 1978-
2002 UK energy scenario studies, which ignored the incoming large expansion of natural gas starting
mid-1990s, due to a prior consensus of government coal technology prioritization (Trutnevyte et al.
2016). Technological and behavioural systems and policy instruments are simplified into binary
exogenous variables (Hughes and Strachan 2010). However, social and technological change are
highly intertwined, and policy making is an iterative process where unforeseen issues are addressed in
an evolutionary manner (Verbong and Geels 2010; Hoppmann et al. 2014). The challenge remains to
endogenously operationalize this evolutionary complexity through interactions between government,
firms, and civil society, whom initiate events and policies leading to profound system change (Hughes
and Strachan 2010). In the absence of a working operationalization our classification is limited to in-
or exclusion of socio-political-technical model interactions.

Successful implementation of socio-political-technical interactions can lead to a shift from modelling
policy decisions impact, to modelling mechanisms by which a policy instrument affects outcomes,
and ultimately into endogenous pathways of policy action as model results (Neij and Astrand 2006).
Initial knowledge can be gained through pathway exercises including socio-technical interactions
(Foxon 2013; Bolton and Foxon 2015), stakeholder derived model scenarios with explicated socio-
political-technical interactions (Schmid and Knopf 2012), classification of built and conceptual model
elements alongside socio-political-technical lines (Wu 2015), and social science theory such as the
morphogenesis of decision making structures and civil society action (Archer 1996).

2.3 MODEL SCENARIO EXERCISES

The policy problem analyses as discussed in section 2.1 can be implemented using models via
scenario exercises. Six scenario exercises as discussed by Borjeson et al. (2006) are here recast to
align them with computer model based approaches for carrying out particular policy problem
analyses. Three main scenario types are outlined, predictive which looks into how a system will
evolve under a-priori assumed trends, explorative which focuses on system evolution through
interactions as a sequence of events and responses, and normative which investigates how a system
target can efficiently be met.

The purpose of a predictive forecast is to improve insights into what will happen within a single
scenario given a set of trends. The scenario includes a-priori chosen policy instruments plus system
parameters and has a high perceived probability. The approach is helpful to carry out an indicator
assessment either of proposed policies, or to track performance of a goal under present policies. The
second exercise, predictive what-if, is used to gain insights in what will happen by exploring at
minimum two scenarios given varying sets of trends. Variations can include a-priori defined what-if
type events, model structure alterations, and parametric settings between models runs. The exercise
can be used for instrument comparison and option reduction to test whether a policy instrument leads
to minimum desirable impacts.
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The third exercise, explorative external, functions to assess what can happen following sub-sequent
natural or societal events assuming present policies as fixed. The aim is to model systems evolution at
firm and societal level to assess resilience to events. Resilience can be operationalised by tracking
economic, technical, and political feasibility states using indicator variables. Results can be
interpreted for problem discovery and societal paradigm change analyses to understand which events
are of significance for further exploration, to examine pre-emptive action, or as part of contingency
preparation. Explorative strategic exercises focus on what can happen due to sub-sequent events
inclusive of endogenous policy interaction. The goal is to find a robust set of policies and their
implementation path to cope with systems change, combining instrument comparison, problem
discovery, and political and societal paradigm change analyses.

The fifth exercise normative preserving serves to understand how predefined target(s) can efficiently
be met. The approach, suitable for indicator assessment and instrument comparison, sets an objective
to find the feasibility of certain targets, or an optimum policy instrument level, assuming continuity of
key socio-economic characteristics like demand growth. The use for option reduction is excluded
because the necessary optimization approach sheds a substantial number of sub-optimal solutions,
which are plausibly relevant. Finally, normative transforming exercises aim to provide insight in
how predefined target(s) can be efficiently met inclusive of socio-political-technical change. The
exercise uses optimization to find societal structures and policy instruments that need to change to
optimally reach a target. The approach combines instrument comparison and political and societal
paradigm change.
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3. RESULTS

3.1 POLICY PURPOSE TO MODEL CHARACTERISTICS FRAMEWORK

The model characteristics form a classification structure of electricity system models. Eight categories
are the result including the temporal structure in annual, time-slice, or continuous approaches. Each
category has its own member level as chosen by the modeller and described in section 2.2, whose
relevance within the model scope is indicated with a sub-system reference 1,2 and 3 (figure 6). For
example, since electricity market sub-systems deal with short-term the technological change
characteristic is not relevant.

Model scope

1) Electricity 2) Grid power 3) Generation
supply - demand | flow / frequency capacity
markets resolvement expansion

Model characteristics

Modelling paradigm Uncertainty treatment Number of decision makers Knowledge availability

Optimization |1(2[3 Deterministic  |1(23 uniform (central planner) (1(2|3 Amblyopia (reduced vision) (1|2 ai

Probabilistic Myopia (short sightedness) |1|2 3‘

=Y

Equilibrium (1|3 2(3 pluriform (oligopoly) 1)2[3

=

Simulation 1)2[3 Possibilistic 2(3 omniform (all firms) 13 Hyperopia (far sightedness) |1|3

=
[« )

Diplopia (bounded rationality)

Temporal approach Technological change Decision response

=
W

Omniopia (complete knowledge)

Annual 1|3 Exogenous costs |2 3] Homogeneous (123

Heterogeneous |1]3 Socio-political-technical interactions

a8

Time slices 112 Passive learning curve (2(3

Continuous (1|2 Active learning curve (23 ?

Productivity based R&D |2 3]

Figure 6 — a classification structure of electricity system models using six model characteristics.
Numbers 1, 2 and 3indicate relevance for electricity market, grid flow, and capacity expansion
components.

The described model characteristics are linked to the six scenario exercises on the basis of execution
requirements. Such links are made on the basis of logical reasoning constrained by presented scenario
descriptions (section 2.3). For example, a predictive forecast necessitates simulation since it looks at
what will happen given a set of trends, as opposed to what needs to happen given a set target in the
future. It is a deterministic exercise since a single scenario run is undertaken and thereby uncertainty
is ignored for simplification purposes. Similarly it is aligned to a single scenario, decision maker
representation is homogeneous, decision makers are uniform or at best pluriform, and opsis is limited
to cases without future knowledge due to the simulation paradigm. Technological change is
exogenous and socio-technical-political aspects are excluded as endogenous variants would defeat the
purpose of presenting a uniform single scenario. These links for all scenario exercises to model
characteristics are presented in table 1.
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Table 1 — Coupling between scenario exercises and their purpose for policy problem treatment

Scenario type Predictive Explorative Normative

Model aspect Forecasts What-if External Strategic Preserving  Transforming
Indicator assessment X X X

Problem exploration X X

Option reduction X

Instrument comparison X X

Political paradigm X X
exploration

Societal paradigm X X X
exploration

Scenario exercises have a purpose in carrying out a particular policy analysis purpose or combinations
thereof (section 2.1). Some scenario exercises are better suited for particular purposes given their
approach and related model capabilities detailed above. For instance, a model analysis of a societal
paradigm shift in favouring a particular technology, outside of pure economic reasons, requires
interactions which transform the socio-economic system and thereby can relate to explorative
external, explorative strategic or normative transforming scenarios. The other scenario exercises
assume relative continuity in key socio-economic characteristics barring their employment for
analysing societal paradigm shifts. A potential structure of links between the six scenario exercises
and their assigned purpose of policy problem treatment are shown in table 2. Finally, all three aspects
of model characteristics, scenario exercises, and policy problem analysis purpose can be brought
together as shown in figure 7 below. An overview of the linkage between model characteristics
and scenario exercises can be found in table 2 below.
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Table 2 — coupling between scenario exercises and model characteristics

Scenario type
Model aspect

Modelling

Paradigm
Parametric
uncertainty
treatment
Decision maker
allogeneity
Decision
response
Knowledge
availability
(opsis)
Technological

change

Socio-political-

technical change

Forecasts

Simulation

Deterministic

Uniform or

pluriform

Homogeneous

Amblyopia/
Myopia /
Hyperopia

Exogenous

Excluded

Predictive
What-if

Simulation

Deterministic/
Uncertainty
Propagation

Uniform or

pluriform

Homogeneous/
Heterogeneous
Amblyopia/
Myopia /
Hyperopia
Deterministic
learning

curves

Excluded

External

Simulation

Stochastic

generators

Pluriform or

omniform

Homogeneous/
Heterogeneous
Amblyopia/
Myopia /
Hyperopia
Stochastic

learning curve

Included

dynamically

Explorative
Strategic

Simulation

Stochastic

generators

Pluriform or

omniform

Homogeneous/
Heterogeneous
Amblyopia/
Myopia /
Hyperopia
Productivity
growth based
R&D

Included

dynamically
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Preserving

Optimization

Deterministic/
Multi-stage

Stochastic

Uniform or

pluriform

Homogeneous/
Heterogeneous
Myopia/
Diplopia/
Omniopia
Deterministic/
Stochastic

learning curve

Excluded

Normative
Transforming

Optimization

Recursive
dynamic
stochastic
Uniform or

pluriform

Homogeneous/
Heterogeneous
Myopia/
Diplopia/
Omniopia
Productivity
growth based
R&D

Included

deterministically
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Figure 7 - relations between policy purpose, scenario exercises, and model characteristics.

3.2 GERMAN ELECTRICITY STUDIES REVIEW

The section provides a summary of 11 German electricity system studies in relation to characteristics
of employed models, scenario exercises executed, and the purpose of policy problem analyses. Study
details are available in online supplement A.

Half of the studies attempt to ascertain cost, generation change, dispatch, or grid stability implications
of 80% CO; reduction by 2050, the nuclear phase-out decision, or both. Others include electric
vehicle grid integration, power-to-gas technology with high renewable penetration, and electricity
plus transport interactions. Nine studies use optimization and two soft-link simulation to
optimization, focusing respectively on generation investments plus electricity markets, and grid
dispatch (Dallinger et al. 2013; Grave et al. 2012). Of the optimization models six operate
deterministically without publication of sensitivity analyses exploring uncertainty. Two studies
present uncertainty propagation using parameter variation (Bruninx et al. 2013; Knopf et al. 2014),
and one incorporates multi-stage stochastic programming (Schréder 2012). The two simulation-
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optimization models use stochastic generators for renewable power dispatch and market decision
uncertainty.

One of the simulation-optimization models is agent-based (Dallinger et al. 2013) the other differential
equation based (Grave et al. 2012), both employing a myopic approach and respectively omniform
heterogenous and uniform homogeneous settings of decision makers and responses. All except one
optimization model incorporates a “central planner” uniform setting with homogeneous and omniopic
complete knowledge decisions. The only multi-stage stochastic optimization model used a market
equilibrium approach in each period with complete firm representation and myopic knowledge limited
to 5 years (Schroder 2012). Two optimization models employ passive learning curves and none R&D
or productivity growth based technological change (Fursch et al. 2012; Schmid and Knopf 2012;
Schmid et al. 2012). However, an expansion of the REMIND model employs schumpeterian
productivity growth (Hibler et al. 2012). The other models utilise exogenous technology cost
scenarios. Finally, no models demonstrate socio-political-technical interactions, but one exercise
included scenarios a-priori assuming socio-technical interactions (Pregger et al. 2013).

Eight of the eleven studies take a normative preserving approach to observe how renewable transition
target(s) can efficiently be met, a-priori assuming trends and varying one policy decision or
technology. The others are two predictive forecasts that investigate one scenario contingent upon
technological change (Dallinger et al. 2013; Jentsch et al. 2014), and one normative transforming
study a-priori assuming socio-technical interactions in six scenarios (Pregger et al. 2013). No analyses
for option reduction, problem discovery, or political and social paradigm change were located.
Exercises are thus carried out for indicator assessment such as GDP and CO. emissions, and
instrument effect analyses like the nuclear phase-out or power-to-gas technology policy support.

3.3 MODEL CAPABILITIES TO REPRODUCE HISTORIC SYSTEM TRENDS

In this section the results are presented of an analysis on model capabilities of the 11 German
electricity system models to reproduce historic German electricity system trends in relation to
characteristics built into these models. Since 1990 German power plant capacity grew from 126 GW
to 175 GW in 2011, primarily from onshore-wind and solar-PV, yet fossil fuel power dispatch only
dropped from 67% to a 58% electricity mix share (figure 8).
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Figure 8 - German generation capacity development in GW (left) and total gross electricity
production in TWh (right) from 1991 to 2011. Source of data: BMWI (2013).
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Six observable trends from 1991 to 2011 defined changes in Germany’s electricity mix. First, slow
electricity demand growth, at 0.8% average from 1991-1999, 1.6% for 2000-2008, and since a stable
620-630 TWh. Demand change is exogenously included as part of the scenarios in 10 out of 11 model
studies. Endogenous demand change was incorporated in Schroder (2012) using a relation between
economic output and energy service requirements. Second, end of life power plant closures,
incorporated in the eleven models as a fixed or usage dependent technical lifetime of power plants.
Third, fossil fuel power plant upgrades and new-builds, with 6.8, 6.1, and 3.4 GW of respectively
natural gas, lignite, and bituminous coal capacity built from 2000-2013. Fossil fuel capacity
development in the model studies is based on endogenous investment or least cost selection in the
electricity system. Fourth, the rise of (community based) renewable energy, between 1991-2012
onshore wind grew from 0.1-31.3 GW, and between 2000-2012 solar-pv grew from 0.1-33 GW and
biomass from 0.5-5.71 GW. A majority share is community owned such as onshore wind at 50.4%
private citizens ownership, 39.4% by institutional and strategic investors, and 10.2% by utilities
(Trend:Research 2013). The ability to endogenously incorporate this trend is limited. Nine employ
exogenously fixed renewable electricity capacity developments, one uses a forced minimum 50%
primary energy from renewables constraint (Nagl et al. 2011), and another a ‘central’ planner
selection using passive learning curves interacting with capacity expansion (Schmid and Knopf 2012).
Five, nuclear phase-out, after the 2011 Fukushima nuclear accident eight nuclear power plants with
8.4 GW capacity were shut-down and another nine with 12 GW are to be closed between 2015-2022.
In all studies this is a scenario selection choice. Six, announced closures of peak-load fossil fuel
plants, caused by competition of feed-in benefitting wind and solar with priority grid access. The four
German utility giants have submitted closure approvals to the regulator BNetZa for 7.7 GW from
2014-2018 (PennEnergy 2014), primarily natural gas peaker plants at 6.8 GW capacity of which 2.2
GW built from 2006-2010 (see online supplement B). This trend is excluded in model studies with a
perfect information approach, as this precludes unprofitable investments due to price uncertainty. The
model in Schréder (2012) could capture this effect by virtue of the multi-stage stochastic approach.

4, DiscusSION

This paper presents an analytical framework to aid thinking about the purpose of electricity system
model use for policy analysis. In particular how capabilities of models based on their characteristics
determine the ability to carry out scenario exercises for a specific purpose. The explication of model
characteristic to policy purposes and scenario exercises aids thinking about policy relevance in
constructing models and formulating model scenario exercises. First, the framework guides model
selection and enhancement in light of desirable scenario exercises. Second, transparency is increased
on model capabilities to carry out specific policy problem analyses. Third, the problem analysis
purpose to scenario exercise relation can be used in communication with policy makers as a common
entry point, used to collaboratively explore policy needs and underlying model capability
requirements. The framework’s limitations are its precision, or lack thereof, in formulating scenario
exercises and create model characteristic and problem analysis relations. For instance, normative
preserving exercises can uncover problems such as grid limitations (Bruninx et al. 2013), but their use
to problem discovery is limited because of optimization constraints and few interactive elements.
Notwithstanding remaining grey areas, explication serves as a richer base for discussion and model
critique to be built upon. Another discussion point relates to the identification of existing capabilities
of German electricity system model studies and their characteristics. The sample of 11 models is a
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cross-section of the 90+ models in existence, and study findings are not directly externally valid for
all electricity models, unless this sample is fully representative. However, the extent to which
individual characteristics are captured has partially been captured and discussed in the overall review
in absence of a complete analysis of all existing models.

5. CONCLUSIONS

The study was set out to accomplish three objectives. The first objective was to provide a framework
to structure thinking about model building and use for scenario use to policy insights. The analysis
was built by separately discussing each aspect: policy problem analyses, model characteristics, and
scenario exercise types. And subsequently the objective was met by linking all three components into
a framework in section 3.1 to provide the sought after structure.

The second objective to provide insights in what type of policy problem analyses are at present
feasible was carried out by examining German electricity model scenario studies. It was found that
present model studies are dominated by a-priori fixing key input parameters and strong constraints. In
some cases bordering on locking in model results since the outcome becomes mentally predictable
one or two key parameters, such as the relative costs of coal and gas. The implication for the present
state of electricity system models is that the model purpose of policy problem analysis is limited in
purpose to indicator assessments and instrument analyses under a situation of pre-selected policy
instrument(s). Modelling means are not sufficiently available to explore which problems deserve
policy attention, or what solutions among a range of instruments are best suited, as modelling
capabilities are either in their infancy, or too recent for widespread inclusion. Model use for option
reduction, problem discovery, and political or societal paradigm exploration thus at large remains out
of reach.

The third objective was to examine the existing characteristics of models to analyse what
improvements can be made to expand the scenario to policy insights. This was accomplished by
studying the particular characteristics of the 11 German models and their scenarios, which uncovered
the following specific areas of improvement:

¢ Lack of endogenous capacity change in renewable technologies including different policy
effects as a structural model feature.

o Limited use of existing modelling techniques dealing with uncertainty, especially the lack of
parameter sensitivity analyses.

e A dominant focus on “central planner” uniform approaches with perfect information,
excluding market competition and knowledge limitation effects.

e Exclusion of socio-political-technical features in models through government, firm, and
societal interactions, barring modelling system aspects such as technology niche creation and
renewable community ownership effects.

¢ Dominance of exogenous technological change, minor use of passive learning by doing, and
no applications of R&D investment and productivity growth approaches.
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Most limitations can be overcome by adjusting model structure with available technigues, changing
model constraints, or increasing model runs and parameter variation. A major challenge for the field is
the modelling of socio-political-technical interactions, necessary to enable a shift from solution
analysis, to solution discovery and problem analysis, so as to bolster policy-relevance of electricity
systems models.
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